News

Characterization of pancreatic and biliary cancer stem cells in patient-derived tissue
Stacks Image 24247
Pancreatic ductal adenocarcinoma (PDAC) and extrahepatic cholangio-carcinoma (eCC) represent two cancer entities with devastating prognoses. Despite recent progress in research and treatment, therapy remains challenging. Cancer stem cells (CSCs) have been shown to play an important role in metastasis and chemoresistance. Therefore, CSCs may play a promising role as a potential therapeutic target.
A total of 31 patients (23 PDAC, 8 eCC) were included in the study. CSCs were analyzed in a single-cell suspension of tumor samples via fluorescence-activated cell scanning (FACS) with a functional Hoechst 33342 staining as well as a cell surface marker staining of the CSC-panel (CD24, CD44 and EpCAM) and markers to identify fibroblasts, leukocytes and components of the notch signaling pathway. Furthermore, the potential presence of CSCs among primary cancer-associated fibroblasts (CAFs) was assessed using the same FACS-panel.
We showed that CSCs are present in patient-derived dissociated tumor tissue. The functional and surface marker profile of CSC-detection did in fact correlate. The amount of CSCs was significantly correlated with tumor characteristics such as a higher UICC stadium and nodal invasion. CSCs were not restricted to the epithelial cell fraction in tumor tissues, which has been verified in independent analysis of primary cell cultures of CAFs.
Our study confirms the in vivo presence of CSCs in PDAC and eCC, stating a clinical significance thereof and thus their plausibility as therapeutic targets. In addition, stem-like cells also seem to constitute a part of the CAFs.

"Characterization of Pancreatic and Biliary Cancer Stem Cells in Patient-derived Tissue" was published in Anticancer Research. Authors are J. Gogolok, E. Seidel, A. Strönisch, A. Reutzel-Selke, I.M. Sauer, J. Pratschke, M. Bahra, and R.B. Schmuck.
BIH Paper of the Month
Stacks Image 24659
Benjamin Strücker, Hendrik Napierala and the rest of the team were awarded with the BIH Paper of the Month for their publication on a new method for developing a transplantable endocrine Neo-Pancreas.

The BIH Paper of the Month is awarded by the BIH Board of Directors to honor a special publication achievement from the joint research space of Charité and MDC. The Paper of the Month is sponsored by the Stiftung Charité as part of its Johanna Quandt Private Excellence Initiative. 

H. Napierala, K.-H. Hillebrandt, N. Haep, P. Tang, M. Tintemann, J. Gassner, M. Noesser, H. Everwien, N. Seiffert, M. Kluge, E. Teegen, D. Polenz, S. Lippert, D. Geisel, A. Reutzel Selke, N. Raschzok, A. Andreou, J. Pratschke, I. M. Sauer & B. Struecker. Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Scientific Reports 7. Article number: 41777 (2017) doi:10.1038/srep41777
Read More
Engineering an endocrine Neo-Pancreas
Stacks Image 24716
Scientific Reports accepted our latest paper on „Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans“. Authors are H. Napierala, K. Hillebrandt, N. Haep, P. Tang, M. Tintemann, J. Gassner, M. Noesser, H. Everwien, N. Seiffert, M. Kluge, E. Teegen, D. Polenz, S. Lippert, D. Geisel, A. Reutzel-Selke, N. Raschzok, A. Andreou, J. Pratschke, I.M. Sauer, and B. Struecker.
Decellularization of pancreata and repopulation of these non-immunogenic matrices with islets and endothelial cells could provide transplantable, endocrine Neo- Pancreata. In this study, rat pancreata were perfusion decellularized and repopulated with intact islets, comparing three perfusion routes (Artery, Portal Vein, Pancreatic Duct). Decellularization effectively removed all cellular components but conserved the pancreas specific extracellular matrix. Digital subtraction angiography of the matrices showed a conserved integrity of the decellularized vascular system but a contrast emersion into the parenchyma via the decellularized pancreatic duct. Islets infused via the pancreatic duct leaked from the ductular system into the peri-ductular decellularized space despite their magnitude. TUNEL staining and Glucose stimulated insulin secretion revealed that islets were viable and functional after the process.
We present the first available protocol for perfusion decellularization of rat pancreata via three different perfusion routes. Furthermore, we provide first proof-of-concept for the repopulation of the decellularized rat pancreata with functional islets of Langerhans. The presented technique can serve as a bioengineering platform to generate implantable and functional endocrine Neo-Pancreata.
Read More
Decellularization of pancreata – EPITA Award
Stacks Image 24991
Ben Strücker presented our latest results on DECELLULARIZATION OF WHOLE RAT PANCREATA – EVALUATION OF THREE DIFFERENT PERFUSION ROUTES at the 5th EPITA Winter Symposium in Innsbruck from the 25th to the 27th of January 2015. He received the AIDPIT&EPITA Award for the best oral presentation. Congratulations!

Ben Strücker presented three effective protocols for rat pancreas perfusion decellularization, evaluating different perfusion routes. In contrast to liver decellularization the perfusion route seems to have no major impact on decellularization results. The dPECMs could serve for cellular repopulation with islets from a different (xenogene) origin to generate functional, transplantable endocrine pancreata in vitro.
Read More
 Page 1 / 1 

Archive


Categories

Year

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.