News

MRI and ectopic liver cell transplantation - new paper
Stacks Image 25314
Nathanael Raschzok’s latest paper on „Feasibility of fast dynamic MRI for noninvasive monitoring during ectopic liver cell transplantation to the spleen in a porcine model“ is now available in AJR Am J Roentgenol. 2012 Jun;198(6):1417-23.
Liver cell transplantation is a promising approach for the treatment of metabolic liver disorders. However, a method for noninvasive monitoring during liver cell transplantation is not available clinically. The aim of this study was to investigate the feasibility of fast dynamic MRI monitoring during liver cell infusion to the spleen, which is considered an ectopic implantation site for liver cell transplantation. Porcine liver cells were labeled with micron-sized iron oxide particles and infused to the spleens of pigs (n = 5) via the lineal artery. MRI was performed using a 3-T MR scanner. Initially, T1- and T2-weighted pulse sequences were tested. Thereafter, fast dynamic MRI was performed during cell infusion. MR findings were verified by immunohistological examinations.

Images from static MRI (TR/TE, 2500/105.2) showed significantly lower signal intensity and signal-to-noise ratio after cell infusion compared with pretransplant images. T2-weighted fast dynamic MRI enabled visualization of signal decrease of the spleen during cell infusion. When cells were infused systemically, no signal changes in the spleen were observed. This study shows that fast dynamic MRI can enable noninvasive monitoring during liver cell transplantation to the spleen. This approach could be useful for preclinical studies and for quality control of clinical liver cell transplantation.
Back
Stacks Image 27655
Our manuscript "Depletion of donor dendritic cells ameliorates immunogenicity of both skin and hind limb transplants" has been accepted for publication in Frontiers in Immunology, section Alloimmunity and Transplantation. Authors are Muhammad Imtiaz Ashraf, Joerg Mengwasser, Anja Reutzel-Selke, Dietrich Polenz, Kirsten Führer, Steffen Lippert, Peter Tang, Edward Michaelis, Rusan Catar, Johann Pratschke, Christian Witzel, Igor M. Sauer, Stefan G. Tullius, and Barbara Kern.

Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APC), particularly dendritic cells (DC), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DC (cDC) and APC on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation.
By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. While donor depletion of cDC and APC reduced frequencies, maturation, and activation of DC in all analysed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APC and cDC mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.

Archive


Categories

Year

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.