News

NeoHybrid liver graft – proof of concept
Stacks Image 24842
Cells Tissues Organs accepted our latest paper on "Allogeneic liver transplantation and subsequent syngeneic hepatocyte transplantation in a rat model – proof of concept for in vivo tissue engineering" for publication.

Authors are Susanne Rohn, Jan Schroeder, Henriette Riedel, Dietrich Polenz, Katarina Stanko, Anja Reutzel-Selke, Peter Tang, Lydia Brusendorf, Nathanael Raschzok, Peter Neuhaus, Johann Pratschke, Birgit Sawitzki, Igor M. Sauer, and Martina T. Mogl.

Aim of the project was the evaluation of a new concept for in vivo tissue engineering using autologous primary human hepatocytes and hepatic progenitor cells isolated from diseased livers explanted during orthotopic liver transplantation (LTx). Cells will be isolated and infused into the spleen for repopulation of the allogeneic liver graft. The latter is serving as biological matrix for the engraftment of autologous cells. Once these cells have engrafted, it is assumed that autologous cells will repopulate the allogeneic liver, since they should have a selective advantage due to their autologous origin. It is postulated that this will lead to a neo-hybrid liver graft, reducing immunogenicity and inducing immunoregulation thus minimizing the need for extensive immunosuppression and eventually inducing operational tolerance. 

We therefore developed a new rat model for combined liver and liver cell transplantation under stable immunosuppression. Immunohistochemistry demonstrated the engraftment of transplanted cells, as confirmed by fluorescence in-situ hybridization, showing repopulation of the liver graft with 15.6 % male cells (± 1.8 SEM) at day 90. The quantitative PCR revealed 14.15 % (mean ± 5.09 SEM) male DNA at day 90. Engraftment of transplanted autologous cells after combined liver and cell transplantation was achieved for up to 90 days under immunosuppression. Immunohistochemistry indicated cell proliferation, and the fluorescence in-situ hybridization results were partly confirmed by quantitative RT-PCR. This new protocol in rats appears feasible to address long-term function and eventually induction of operational tolerance in the future.
Back
Stacks Image 27655
Our manuscript "Depletion of donor dendritic cells ameliorates immunogenicity of both skin and hind limb transplants" has been accepted for publication in Frontiers in Immunology, section Alloimmunity and Transplantation. Authors are Muhammad Imtiaz Ashraf, Joerg Mengwasser, Anja Reutzel-Selke, Dietrich Polenz, Kirsten Führer, Steffen Lippert, Peter Tang, Edward Michaelis, Rusan Catar, Johann Pratschke, Christian Witzel, Igor M. Sauer, Stefan G. Tullius, and Barbara Kern.

Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APC), particularly dendritic cells (DC), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DC (cDC) and APC on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation.
By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. While donor depletion of cDC and APC reduced frequencies, maturation, and activation of DC in all analysed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APC and cDC mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.

Archive


Categories

Year

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.