News

Cytokine-armed vaccinia virus promotes cytotoxicity towards pancreatic carcinoma cells
Stacks Image 27891
The manuscript "Cytokine-armed vaccinia virus promotes cytotoxicity towards pancreatic carcinoma cells via activation of human intermediary CD56dimCD16dim natural killer cells" by Ruonan Wang, Mengwen Hu, Isis Lozzi, Cao Z.J. Jin, Dou Ma, Katrin Splith, Jörg Mengwasser, Vincent Wolf, Linda Feldbrügge, Peter Tang, Lea Timmermann, Karl H. Hillebrandt, Marieluise Kirchner, Philipp Mertins, Georg Hilfenhaus, Christopher Neumann, Thomas Kammertoens, Johann Pratschke, Thomas Malinka, Igor Sauer, Elfriede Nössner, Zhongsheng Guo and Matthäus Felsenstein has been accepted for publication in the International Journal of Cancer.
 
Pancreatic ductal adenocarcinoma (PDAC) remains a particularly aggressive disease with few effective treatments. The PDAC tumor immune microenvironment (TIME) is known to be immune suppressive. Oncolytic viruses can increase tumor immunogenicity via immunogenic cell death(ICD). We focused on tumor-selective (vvDD) and cytokine-armed Western-Reserve vaccinia viruses (vvDD-IL2, vvDD-IL15) and infected carcinoma cell lines as well as patient-derived primary PDAC cells. In co-culture experiments, we investigated the cytotoxic response and the activation of human natural killer cells (NK). Infection and virus replication were assessed by measuring virus encoded YFP. We then analyzed intracellular signaling processes and oncolysis via in-depth proteomic analysis, immunoblotting and TUNEL assay. Following the co-culture of mock or virus infected carcinoma cell lines with allogenic PBMCs or NK cell lines, CD56+ NK cells were analyzed with respect to their activation, cytotoxicity and effector function. Both, dose- and time-dependent release of danger signals following infection was assayed. Viruses effectively entered PDAC cells and emitted YFP signals. Infection resulted in concomitant oncolysis. The proteome showed reprogramming of normally active core signaling pathways in PDAC occurred(e.g. MAPK-ERK signaling). Danger-associated molecular patterns were released upon infection and stimulated co-cultured NK cells for enhanced effector cytotoxicity. NK cell subtyping revealed enhanced numbers and activation of a rare CD56dimCD16dim population. Tumor cell killing was primarily triggered via Fas ligands rather than granule release, resulting in marked apoptosis. Cytokine-armed vaccinia viruses induced NK cell activation and enhanced cytotoxicity towards human PDAC cells in vitro. The cytokine-armed virus targets the carcinoma cells with great potential to modulate the TIME in PDAC.
Induced pluripotent stem cell (iPSC) line (EXSURGi001-A) from a patient homozygous for the p.Ala165Thr mutation in the MTARC1 gene
Stacks Image 27839
The paper "Induced pluripotent stem cell (iPSC) line (EXSURGi001-A) from a patient homozygous for the p.Ala165Thr mutation in the MTARC1 gene" in Stem Cell Research is available open access. Authors are Peter Tang, Eriselda Keshi, Silvana Wilken, Louise Wutsdorff, Julienne Mougnekabol, Johann Pratschke, Igor M. Sauer and Nils Haep.

Metabolic dysfunction-associated fatty liver disease (MAFLD), the leading cause of end-stage liver disease in developed countries, is expected to increase over the next decade. Characterized by hepatic steatosis, MAFLD is commonly studied in animal models.
Here, we generated a human induced pluripotent stem cell (iPSC) line from a patient homozygous of the protective MTARC1 gene variant rs2642438:A.
This line displays a normal karyotype and typical pluripotent stem cell morphology and can differentiate into all three germ layers in vitro.
Extracellular NAD+ Response to Post-Hepatectomy Liver Failure: Bridging Preclinical and Clinical Findings
Stacks Image 27844
Our manuscript entitled "Extracellular NAD+ Response to Post-Hepatectomy Liver Failure: Bridging Preclinical and Clinical Findings" has been accepted for publication in Communications Biology. Authors are Can Kamali, Philipp Brunnbauer, Kaan Kamali, Al-Hussein Saqr, Alexander Arnold, Gulcin Harman Kamali, Julia Babigian, Eriselda Keshi, Raphael Mohr, Matthäus Felsenstein, Simon Moosburner, Karl Hillebrandt, Jasmin Bartels, Igor Sauer, Frank Tacke, Moritz Schmelzle, Johann Pratschke, and Felix Krenzien.

Liver fibrosis progressing to cirrhosis is a major risk factor for liver cancer, impacting surgical treatment and survival. Our study investigates extracellular Nicotinamide adenine dinucleotide (eNAD+) in liver fibrosis, analyzing patients undergoing surgery and exploring NAD+'s therapeutic potential in a mouse model of extended liver resection and in vitro using 3D hepatocyte spheroids.

eNAD+ correlated with aspartate transaminase (AST) and bilirubin after liver resection (AST: r = 0.2828, p = 0.0087; Bilirubin: r = 0.2584, p = 0.0176). Post-hepatectomy liver failure (PHLF) was associated with higher eNAD+ peaks (n = 10; p = 0.0063). Postoperative eNAD+ levels decreased significantly (p < 0.05), but in advanced liver fibrosis or cirrhosis, this decline diminished or increased. NAD+ biosynthesis enzymes, NAMPT and NMNAT3, were significantly upregulated in higher fibrosis stages (p < 0.0001). NAD+ administration in 3D hepatocyte spheroids rescued hepatocytes from TNFα-induced cell death and improved viability (p < 0.0001). In mice, NAD+ treatment significantly improved survival (p = 0.0155) and liver regeneration (p = 0.0186) after extended liver resection.

eNAD+ is upregulated in PHLF, and NAD+ biosynthesis enzymes show higher expression in liver fibrosis. eNAD+ administration improved survival and hepatocyte viability, offering a potential target for future therapies.

Viscoelastic properties of colorectal liver metastases reflect the tumour cell viability
Stacks Image 27810
Our paper on "Viscoelastic properties of colorectal liver metastases reflect the tumour cell viability" has been accepted for publication in Journal of Translational Medicine.

Colorectal cancer is one of the third most common cancers in the world and up to 50% of the patients develop liver metastases (CRLM) within five years. To improve and personalize therapeutic strategies, new diagnostic tools are urgently needed. An improvement could be achieved by considering biomechanical tumour properties with the implementation of magnetic resonance elastography (MRE). Our main hypothesis is that ex vivo MRE combined with histological evaluation of CRLM could provide the knowledge for using tissue mechanical properties as a diagnostic marker for cell viability in tumours.

We examined 34 CRLM samples from patients who had undergone liver resection at the Charité – Universitätsmedizin Berlin, Department of Surgery. The samples were investigated with an ex vivo MRE.  We employed a frequency range from 500 Hz to 5300 Hz, with increments of 400 Hz. For histological analysis, the samples were stained with H&E for categorization by a board-certified pathologist based on their grade of regression. The radiological response was evaluated using the RECIST-criteria.

Five samples showed major response to chemotherapy, 6 samples partial response, and 23 samples showed no response. Analysis of shear wave speed c significant correlation for frequencies including 2100 Hz and above depending on the grade of regression, indicating that low cell viability in CRLM is associated with higher tumour stiffness. Analysis of frequency-independent values of the SP-model showed a more elastic-solid behaviour at low cell viability. Our results suggest that MRE can be used to characterize the biomechanical properties associated with cell viability in CRLM, showing a higher stiffness and elastic-solid behaviour with high regression. In the future, MRE could help to improve the diagnostic tools to create an individual, tailored therapy plan for patients with CRLM.

Authors are Lisa-Marie Skrip, Simon Moosburner, Peter Tang, Jing Guo, Steffen Görner, Heiko Tzschätzsch, Clarissa Hosse, Uli Fehrenbach, Alexander Arnold, Dominik Modest, Felix Krenzien, Wenzel Schöning, Thomas Malinka, Johann Pratschke, Björn Papke, Josef A. Käs, Ingolf Sack, Igor M. Sauer, and Karl H. Hillebrandt,
 Page 1 / 1 
Stacks Image 27655
Our manuscript "Depletion of donor dendritic cells ameliorates immunogenicity of both skin and hind limb transplants" has been accepted for publication in Frontiers in Immunology, section Alloimmunity and Transplantation. Authors are Muhammad Imtiaz Ashraf, Joerg Mengwasser, Anja Reutzel-Selke, Dietrich Polenz, Kirsten Führer, Steffen Lippert, Peter Tang, Edward Michaelis, Rusan Catar, Johann Pratschke, Christian Witzel, Igor M. Sauer, Stefan G. Tullius, and Barbara Kern.

Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APC), particularly dendritic cells (DC), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DC (cDC) and APC on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation.
By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. While donor depletion of cDC and APC reduced frequencies, maturation, and activation of DC in all analysed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APC and cDC mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.

Archive


Categories

Year

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.