science x media Tandem Program: "From Slices to Spaces"
Prof. Dr. Moritz Queisner and Frédéric Eyl (Designer and Managing Director of TheGreenEyl) successfully applied to the Stiftung Charité for funding as a "science x media tandem".
The science x media tandems are the first programme in the new funding priority "Open Life Science". With this funding priority, the Charité Foundation is working to make the life sciences in Berlin more comprehensible and accessible to a broader public and to strengthen the trustworthiness of medical professionals.

Under the title "From Slices to Spaces", the tandem of Moritz Queisner and Frédéric Eyl is implementing a science parcours in which spatially complex research data from surgery and biomedicine will be made multisensually accessible to a broad audience through new visualization techniques. Building on research work on new imaging techniques by Moritz Queisner, they employ Extended Reality techniques. Due to their unique ability to link digital objects with the real environment of the viewers, the 4D images they generate are particularly suited for representing and conveying spatial information.

This is where the tandem's project comes in: 4D images are not only interesting for researchers to understand complex research data but can also provide laypeople with a less presupposing insight into research data and processes. Frédéric Eyl's media expertise will be used to make the specific visual knowledge from research comprehensible and experiential for non-experts. The science parcours is intended to integrate as a digital extension into the architecture of the new research building, "Der Simulierte Mensch", located on the premises of Charité. The parcours will include the facade, the inter-floor airspace, and the central glass surfaces within the building as its stations. By enabling users to explore 4D research data within the architecture and investigate it using their own smartphones in an AR application, concrete practices and deployment locations of new image-based technologies become experiential and comprehensible. This project not only enhances the perception of Charité and the scientific location of Berlin but also opens up places of knowledge creation to the public, making practices and techniques of life sciences more visible.

Stacks Image 23814
Stacks Image 27655
Our manuscript "Depletion of donor dendritic cells ameliorates immunogenicity of both skin and hind limb transplants" has been accepted for publication in Frontiers in Immunology, section Alloimmunity and Transplantation. Authors are Muhammad Imtiaz Ashraf, Joerg Mengwasser, Anja Reutzel-Selke, Dietrich Polenz, Kirsten Führer, Steffen Lippert, Peter Tang, Edward Michaelis, Rusan Catar, Johann Pratschke, Christian Witzel, Igor M. Sauer, Stefan G. Tullius, and Barbara Kern.

Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APC), particularly dendritic cells (DC), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DC (cDC) and APC on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation.
By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. While donor depletion of cDC and APC reduced frequencies, maturation, and activation of DC in all analysed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APC and cDC mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.




This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.